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About the Emergency Management of Tomorrow Research 
The Department of Homeland Security (DHS) Science and Technology Directorate (S&T) is 
partnering with Pacific Northwest National Laboratory (PNNL) to execute the Emergency 
Management (EM) of Tomorrow Research (EMOTR) program to identify current EM research, 
elicit capability needs from EM practitioners, and identify where technology, such as artificial 
intelligence (AI), may benefit the future of EM and emergency operations centers. The project is 
delivering a phased and iterative approach to inform future research and development (R&D) 
and investments for the EM community.   

This report details the methodology, analysis, and insights of a landscape assessment of AI 
technologies and their potential application to EM. Feedback from this task will help shape 
future EMOTR research, analysis, and recommendations. To learn more about this task or 
others within the EMOTR scope, contact emotr@pnnl.gov. 

mailto:emotr@pnnl.gov
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Summary 
The PNNL EMOTR team performed a landscape assessment of AI technologies and their 
potential application to EM. The landscape assessment began with an extensive literature 
review and tagging exercise to capture ideas, and curated and validated those ideas through 
discussions with emergency managers, university faculty, college students, national laboratory 
researchers, and federal staff.   

With the resultant set of curated ideas, the team developed a list of 13 highlighted and enabling 
technologies that have a high probability of enhancing EM in the next 10 years.   

Seven technologies had consensus from AI and EM stakeholders as to their optimistic future in 
EM: 

• AI-Enabled Productivity Applications 
• Public-Facing AI Communication 
• AI-Enabled Planning 
• AI-Filtered Domain Awareness 
• AI-Enabled Disaster Prediction and Detection 
• AI-Enabled Recovery and Prediction 
• Risk Models for Optimal Asset Deployment. 

Two additional technologies were included because of potential impact in the field, despite less 
interest from emergency managers: 

• AI Embedding for Alternative Data Streams 
• Modern Optimization for Asset Deployment. 

Four enabling technologies must be in place for the previous technologies to provide impact: 

• Security of AI Assets and Data   
• Modeling, Simulation, and Digital Twin 
• Information Technology Infrastructure for AI 
• Governance and Public Perception of AI. 

Of the highlighted technologies, improvement may be made through private industry and other 
public sector investment (such as from the Department of Defense or the intelligence 
community). Three have constraints and requirements specific to EM and may not progress 
without specific interest from the EM community: Risk Models for Optimal Asset Deployment, AI 
Embedding for Alternative Data Streams, and Modern Optimization for Asset Deployment. 
Finally, Governance and Public Perception of AI was identified as the most important enabling 
technology overall for AI, but Security of AI Assets and Data was identified as being the 
enabling technology with constraints and requirements most specific to the public sector, to 
DHS S&T, and to EM. 

This report summarizes the methodology, analysis, and insights of the AI landscape 
assessment, highlighting an in-depth review of AI technologies and their potential application to 
EM. This information will inform future EMOTR research and outreach, which ultimately aims to 
assist DHS S&T in making informed decisions for future EM R&D. 
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Acronyms and Abbreviations 
AI Artificial Intelligence 
CEHC College of Emergency Preparedness, Homeland Security, and 

Cybersecurity   
DoD Department of Defense 
DHS Department of Homeland Security   
EM Emergency Management 
EMOTR Emergency Management of Tomorrow Research 
EOC Emergency Operations Center 
GIS Geographic Information Systems 
LLM Large Language Models 
ML Machine Learning 
MLOps Machine Learning Operations   
NLP Natural Language Processing 
NYS DHSES New York State’s Division of Homeland Security and Emergency Services   
PNNL Pacific Northwest National Laboratory   
RAG Retrieval Augmented Generation 
TRL Technology Readiness Level 
UAlbany   University at Albany 



Contents vi 

Contents 
Summary ................................................................................................................................... iii 
Acknowledgments...................................................................................................................... iv 
Acronyms and Abbreviations.......................................................................................................v 
1.0 Introduction .....................................................................................................................1 
2.0 Methodology....................................................................................................................2 

2.1 Tagged Bibliography ............................................................................................2 
2.2 Expert Validation..................................................................................................4 
2.3 Idea Generation ...................................................................................................5 

3.0 Framework ......................................................................................................................6 
4.0 Results ............................................................................................................................8 

4.1 AI-Enabled Productivity Applications..................................................................11 
4.2 Public-Facing AI Communication .......................................................................12 
4.3 AI-Filtered Domain Awareness...........................................................................13 
4.4 AI-Enabled Planning ..........................................................................................14 
4.5 AI-Enabled Disaster Prediction and Detection....................................................15 
4.6 AI-Enabled Recovery and Prediction..................................................................16 
4.7 Risk Models for Optimal Asset Deployment .......................................................17 
4.8 AI Embedding for Alternative Data Streams .......................................................18 
4.9 Modern Optimization for Asset Deployment .......................................................19 
4.10 Security of AI Assets and Data...........................................................................20 
4.11 Modeling, Simulation, and Digital Twin...............................................................21 
4.12 Information Technology Infrastructure for AI ......................................................22 
4.13 Governance and Public Perception of AI............................................................23 

5.0 Conclusions...................................................................................................................24 
6.0 References....................................................................................................................26 

6.1 Tagged Bibliography ..........................................................................................27 



Introduction 1 

1.0 Introduction 
Since the start of the “deep learning revolution” in 
2012, machine learning (ML) and artificial 
intelligence (AI) have been increasingly applied 
across domains.i Currently ML techniques in the 
United States are extensively used in the public 
and private domain, and tools based on these 
techniques are used knowingly or unknowingly 
daily by most individuals. Great opportunities exist 
for adoption and development of AI tools to assist 
emergency managers, law enforcement officers, 
support staff, and volunteers before, during, and 
after emergencies and disasters. With further 
development of AI and ML methods, as well as 
applied research and operationalization, AI and 
ML could become a crucial facet of emergency 
management (EM).1-13, 208-210 

Artificial Intelligence or Machine Learning? 

The nomenclature around data science, AI, and 
ML is extensive.i Each term has nuanced 
differences and general consensus does not 
exist regarding when each term is appropriate. 
For this report, the PNNL team sought to 
explore only those technologies that are 
enabled by emerging computational methods 
and not limit perspective to subsets within the 
broader field. Further, the team sought to 
communicate to stakeholders in a way that 
aligned to the communication from other 
sources, such as the popular media. To do this, 
the term AI is used to describe the broad field 
of emerging computational methods throughout 
this report. 

As part of the EM of Tomorrow Research Program 
(EMOTR), sponsored by the Department of Homeland Security (DHS) Science and Technology 
Directorate (S&T), Pacific Northwest National Laboratory (PNNL) performed a landscape 
assessment of AI and ML technologies and their potential application to EM. This report 
summarizes the PNNL team’s scholarly work at the intersection of EM and ML, as of May 2024. 
Their approach takes the perspective of a data scientist seeking to find application areas for AI 
in EM. This perspective is counter to many reviews in the literature, which is typically that of an 
emergency manager, seeking to find a data science technique to solve specific problems.1-16 

This perspective allows for matching of emerging ML techniques to multiple different EM 
problems.  Likewise, technology adoption lags behind technology development. Approaching 
this review from the perspective of data scientists accounts for the faster pace of research in ML 
as compared to the adoption of technology in EM. 

This report details PNNL’s methodology, including assumptions and constraints, as well as a 
framework for the evaluating ML technologies for the overall EM information environment. The 
report describes 13 technologies that constitute the best-aligned AI technologies and AI-
enabling technologies for supporting future EM needs and solving EM problems. The report 
concludes with an examination of which technologies may be realized through investment from 
other entities, both public and private. 

Ultimately, this report provides a current understanding of the most promising AI research as 
applied to EM, along with insights regarding how additional research and development (R&D) 
could benefit the EM landscape of tomorrow. 
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2.0 Methodology 
This task followed three key steps to perform a comprehensive and well-aligned landscape 
assessment for AI/ML research applicable to EM: 
1. Develop a tagged bibliography. 
2. Summarize and validate findings with experts in EM and ML. 
3. Connect with college students with relevant expertise for new and radical ideas. 

2.1   Tagged Bibliography 

To capture the current state of EM and ML literature, the team conducted a multi-pronged 
review, analyzed the key concepts of each source, and developed a bibliography of sources 
tagged by these key concepts. This review paralleled the review in Sleiman, et al. 2024,209 but 
with a restricted focus to only AI in EM. During expert elicitation early in the review process, EM 
applications were perceived as underrepresented in ML research. While this proved to be 
inaccurate, it still prompted use of diverse sources to find relevant publications. 

The core resource in the tagged bibliography generation was keyword searching for conference 
and refereed publications. Search terms included “emergency management” or “disaster 
management” in conjunction with “machine learning” or “artificial intelligence.” To keep pace 
with ML advances, PNNL conducted equivalent searches on the preprint server arxiv.org for un-
refereed manuscripts. To ensure that informal sources did not include additional content, the 
search included several other sources, including Reddit (www.reddit.com) and relevant 
subreddits like r/EmergencyManagement and r/MachineLearning, GitHub (www.github.com) 
with the same search terms as for journal articles, and other forms of media like internet-hosted 
videos and blogs. In general, these informal sources were duplicative or of low quality and were 
not included in the final tagged bibliography. Finally, the team elicited expert opinion from 
existing networks in the EM research, applications, and operations fields, and from the 
foundational and applied ML fields. 

As in other fields, the majority of relevant research identified for EM and ML came from refereed 
and preprint manuscripts. Figure 1 shows the number of papers or preprints published in EM, 
ML, and their intersection since 1991. For reference, all publications are also shown on the 
figure. ML is a fast-growing and popular field in publishing, whereas EM is less so; however, 
these graphs show that the number of ML applications to EM is approximately as expected (the 
proportion of EM-ML publications is approximately the product of the proportion of EM and the 
proportion of ML articles). 

https://www.github.com
https://www.reddit.com
https://arxiv.org
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Figure 1. Number of articlesii and preprintsiii published and corresponding subsets for EM, ML, 
and the combination of EM-ML since 1991. 

To process these articles efficiently, the team generated a tagging process for each article 
based on an initial readthrough. One or more tags were applied to every article. The set of tags 
is outlined in Table 1. 

Table 1. Bibliography Tags 

Tag Definition 

Chatbots   Relating the use of natural language processing (NLP) to create an artificial 
agent that converses with humans to perform EM tasks. 

Data Engineering Relating to the networking, data storage, data format, and other details that 
enable data science for appropriate and timely routing of data. 

Geospatial   Relating to geospatial information services, especially vector-based information 
about roads, land features, and asset locations. 

Overhead Imagery   Relating to images of areas take from overhead flying or satellite-based assets. 

Social Media 
Understanding 

Relating to the use of social media networks and their posts to understand 
events occurring. 

Decision Optimality   Relating to the use of mathematical or ML methods to make more optimal 
decisions, such as routing resources or minimizing risk to populations. 

Disaster Prediction 
and Measurement   

Relating to the use of incoming data to predict the future onset of a disaster or 
emergency, or the measurement of the severity of that event after it has 
started. 

Natural Imagery   Relating to the use of images from visual light taken from approximately ground 
level, to include surveillance cameras and social media posts. 

Robotics   Relating to the control or use of robots in emergencies. 

Public Acceptance Relating to how the public would accept ML technologies during emergencies. 

Review   Review articles of many other articles. 
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Tag Definition 

Testing and Evaluation Relating to how these techniques can be evaluated or tested to confirm 
reliability, accuracy, and effectiveness. 

Security   Related to the security of algorithms from cyber or other forms of attack. 

Online Learning   Related to the continuous learning of a ML system to better adapt to its 
environment. 

Technical Data Related to use of data that is technical in nature, such as spectroscopy or other 
chemical sensors. 

Simulation Related to the creation of data through physical or other forms of simulation. 

Regulation   Related to the legal environment and how it affects the development and 
application of ML technologies. 

Domain Awareness   Related to the presentation and distillation of information about the environment 
and situation to a human. 

Governance Related to the set of rules and regulations that will govern the creation and 
application of ML technologies in EM. 

The nearly 200 articles evaluated are provided with their tags in the bibliography section of this 
document (see section 6.1). In addition, the PNNL team consulted with other national laboratory 
research staff who apply EM-relevant ML technologies to other domains. This report reflects 
their insight regarding the state of the art in geospatial and overhead imagery, change detection 
in imagery, denied communications, alternative optimization techniques, and threat identification 
with online learning. 

2.2 Expert Validation 

From this identification and categorization of articles, the team identified technologies that either 
are promising for solving EM problems in the future or are critical supporting technologies for 
using ML to solve EM problems in the future. To validate these technologies as well-aligned, 
non-trivial, and feasible, the team performed a validation exercise enabled by the University at 
Albany (UAlbany) College of Emergency Preparedness, Homeland Security, and Cybersecurity 
(CEHC) faculty. 

During two sessions conducted on April 2 and 3, 2024, members of UAlbany’s faculty and EM 
stakeholders from state agencies and city departments convened with the PNNL team to 
discuss the identified technologies. The faculty convened included those with expertise in EM, 
cybersecurity, ML, and traditional computer science. The EM stakeholders included 
representatives from the New York State Police, Albany Fire Department, and New York State’s 
Division of Homeland Security and Emergency Services (NYS DHSES). 

During these sessions, discussion of the 13 technology concepts was structured by an activity 
categorizing each technology by its Acceleration Toward Maturity and Potential for New 
Research. The combination of ratings in these two areas splits ideas into concepts that may be 
one of the following: 

• Ideal for DHS investment (high potential but low acceleration) 
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• Impactful and have research support in other industries (high potential and acceleration) 

• Having less impact (low potential).    

These sessions helped ground results of this task in faculty and EM stakeholder-led feedback, 
and included digressions that informed results for enabling technologies. Additionally, these 
sessions indicated imperfect alignment between the AI art-of-the-possible and emergency 
managers’ understanding of it, which presents an opportunity for further education. 

2.3 Idea Generation 

To bolster the diversity of sources for review, this task organized an opportunity to obtain 
outside ideas from a population less indoctrinated to the current state of the practice in EM. On 
April 5, 2024, a “sandpit” exercise was held at UAlbany, where UAlbany and Rensselaer 
Polytechnic Institute students competed to develop ideas to apply ML to an emergency 
operations center (EOC) (Figure 2). In this exercise, 17 student teams of 2-4 students each 
were introduced to the concept of an EOC and provided an exemplar emergency to seed their 
thinking. Students were asked to come up with a concept for ML use in such a situation that 
would improve EOC operations during the emergency. The students communicated their ideas 
through a three-minute, one-slide briefing and a two-page report. The student teams were 
judged by a panel composed of representatives from PNNL, DHS, NYSDHSES, and UAlbany 
faculty. The two best overall student teams and the most creative student team were awarded. 
The student concepts aligned predominantly with the tag of “decision optimality,” which 
validated a previous conclusion that “decision optimality” is an unexpectedly visible and well-
supported subfield within the AI and EM intersection. 

Figure 2.  Sandpit exercise at the UAlbany 
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3.0 Framework 
The information environment that faces emergency managers, first responders, and other 
stakeholders during emergencies is challenging and complex. Information comes to those 
involved in myriad forms, through myriad channels, at varying speeds and with varying levels of 
veracity, uncertainty, and usefulness. Applying AI to EM could have high impact precisely 
because of this complex information environment. AI has proven its efficacy in processing data 
faster, more consistently, and more comprehensively than humans. AI (or data science more 
broadly) utilizes information as its most precious resource, so the literature is deep in how to 
solve the challenges inherent in complex data environments. 

To understand better the EM challenges for which AI can be leveraged, an overarching 
framework is needed to capture that complex information environment. The team developed a 
framework to support capturing this complex information environment (outlined below and 
leveraged throughout this report). This framework was developed from overarching descriptions 
in the EM literature, from expert elicitation and context from emergency managers and other 
stakeholders. The goal of making a formal framework was the following: 

• To identify cross-cutting challenges across many EM applications 

• To identify gaps between well-supported challenges in EM 

• To develop a vision for broader advancement after those gaps were closed 

• To find underdeveloped subfields. 

The EMOTR AI framework is based on many features that can be applied to each EM challenge 
or to available information. The framework comprised five categories of features, two of which 
relate to EM applications and three of which characterize the data available or needed. The EM 
application categories were the Stage of an incident during which an application is relevant and 
the Domain for which information is relevant.   

Stage identified applications along a progression from the following: 

• Mitigation before an incident 

• Detection around the onset of the 
incident 

• Response during the event 

• Recovery after the event. 

Domain identified that data may be available from the following: 

• Public buildings 

• Homes 

• Private commercial buildings 

• Private power infrastructure 

• Private gas infrastructure 

• Telecommunications infrastructure 

• Transportation systems 

• Natural environment 

• Law enforcement systems 

• Other emergency systems. 

To characterize the relevant or available data, the framework characterizes its Modality, 
Uncertainty, and Structure. The Modalities are: 

• Text (and transcribed text) 
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• Geospatial information (such as from 
geographic information systems [GIS]) 
and natural imagery 

• Overhead imagery 

• Climate and weather data 

• Technical readings from the increasing 
number of sensors 

• Metadata on the preceding modalities 
(for example, the time at which a 
transcribed phone call was received). 

Uncertainty characterizes each piece of data as high, medium, low, or variable. Uncertainty 
includes a measure of the likelihood that the datum is mis- or disinformation, and how close the 
datum is to the true value (assuming it is intended to be true). 

Structure of the data could be unstructured (such as geospatial information), structured, or 
mixed. All of these features may be dynamic. For example, a datum may have uncertain 
veracity at the start of an incident but be elevated as it is verified, or a system may be fully 
functioning at the start of an incident but become degraded due to damage. 

The EMOTR AI framework allowed the team to bridge the gap between EM and AI. When 
presented with an EM application, it was possible to easily characterize its Stage and 
hypothesize all the Domains that contained relevant information. The team was able to further 
characterize the relative information by Modality, Uncertainty, and Veracity. This allowed for the 
selection of a data science technique that applied to those Modalities, Uncertainties, and 
Structures. In the converse, for a given AI technique, it was possible to determine which 
Modalities, Uncertainties, and Structures a given technique applied, and use that to step into 
EM applications that required applicable information. Two concrete examples are: 

• EM Application – Civil Unrest Prediction and Mitigation: Prediction and mitigation happen 
before a civil unrest incident and are applicable to the Stage of mitigation. Civil unrest may 
affect public buildings, power or gas infrastructure, transportation, or law enforcement 
systems. It also may be coordinated through telecommunications infrastructure. It may be 
evident or coordinated through text and images on social media or other media. It may also 
be evident on overhead or natural imagery. NLP and computer vision may be applicable. 
The uncertainty of data informing this prediction is especially important, as dis- and 
misinformation is expected about civil unrest. Overall, the data is unstructured, although 
subsets of data such as images have inherent structure. Image-text models (and other 
forms of data fusion) may be useful in civil unrest prediction and mitigation, that techniques 
for verifying uncertain data may be useful, and that any such techniques must be flexible to 
unstructured data (many current techniques require highly structured data). 

• AI Technology – Retrieval Augmented Generation (RAG): RAG is an emerging technique 
that helps large language models (LLM) ensure that their responses to prompts are 
accurate. As such, it improves the uncertainty/veracity of text generated by LLMs. 
Therefore, it is applicable to the text modality. The text modality is available from most 
Domains in EM and also available in most stages of an incident. Therefore, RAG may be a 
cross-cutting technology that enables better AI-generated responses. It may be useful in 
phone call summarization, social media trend understanding, writing of scripts for press 
conferences, writing of after-action and other types of reports, and for use in chatbots to 
respond to its users in an emergency. 

With this EMOTR AI framework in hand, it was possible to match many EM applications to 
technologies and also map many AI technologies to EM applications. By generalizing beyond 
single applications and single AI technologies, this research can posit a small number of trends 
that will have an impact on AI for EM in the next 10 years.   
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4.0 Results 
The results for the tag proportions for the evaluated articles are shown in Figure 3. 
Unsurprisingly, disaster prediction and measurement was a popular field of study. However, the 
second most prevalent topic addressed questions in Decision Optimality. This included resource 
routing during a disaster, placing sensors before disasters, and even risk model formulations of 
similar questions. This finding was validated by the emergency managers in the validation 
exercise and other reports210 considering Decision Optimality as one of the core competencies 
of EM. Another notable prevalence value was the relatively small number of publications on the 
testing and evaluation of AI technologies for EM, echoing a conclusion from other 
recommendations reports.208 This highlights a risk in the field but is unsurprising in the context 
of AI’s broader problems with replication and generalization. Tag prevalence is dynamic and 
likely will evolve over time but are useful in understanding the inclusions and exclusions in 
current research in the field. 

Figure 3.  Number of articles tagged associated with each tag. Note, an article may have more 
than one tag. 

The tag proportions and insights from the alignment and verification technologies were distilled 
into 13 highlighted technologies or enabling technologies that are summarized in one-page 
technology cards, or visual summaries, outlined in the sections 4.1-4.13. Each card represents 
an emerging AI technology with direct alignment to EM that may have the potential to affect the 
latter field within 10 years’ time. Enabling technologies are those things that will constitute the 
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infrastructure for AI technologies and without which progress in these the highlighted 
technologies may not be able to be used.   

The following sections present the 13 highlighted or enabling technology cards (summarized in 
Table 2). Each technology card is a single page with a summary of the technology. This 
summary details relevant references available in section 6.1. Each summary is followed by a 
table that details the following: 

• Type – Whether the concept is a highlighted or enabling technology 

• Name – Technology name 

• Status – Current status including a Technology Readiness Level (TRL) for each technologyxii 

and EM-focused TRL (TRLEM)0F 

1 

• Timing – Estimated time to maturity in years 

• Concept – Key points of the technology 

• Application to EM - Key points on technologies application to EM 

• Research Status – Current state of the research   

• Prediction – Prediction about the future of the technology. 

Table 2.  Highlighted and Enabling Technologies 

Highlighted Technologies Enabling Technologies 

• AI-Enabled Productivity Applications 

• Public-Facing AI Communication 

• AI-Enabled Planning 

• AI-Filtered Domain Awareness 

• AI-Enabled Disaster Prediction and Detection 

• AI-Enabled Recovery and Prediction 

• Risk Models for Optimal Asset Deployment 

• AI Embedding for Alternative Data Streams 

• Modern Optimization for Asset Deployment 

• Security of AI Assets and Data   

• Modeling, Simulation, and Digital Twin 

• Information Technology Infrastructure for AI 

• Governance and Public Perception of AI 

From this set of technologies, several are deemed lower technical risk due to the technology’s 
maturity associated with a relatively high TRL (see Table 3). These technologies present R&D 
opportunities that could be well suited for “quick wins” as much of the technical risk has been 
mitigated. Alternatively, Table 3 also presents two technologies with a low TRLs and therefore 
relatively higher risk R&D propositions. These technologies are well suited for investment to 
realize the potential effectiveness of early-stage concepts and technologies.   

1 The EM TRL, denoted as TRLEM in the table, reflects the analysis on how mature the technology is 
relative to application in the EM domain. 
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Table 3.  Technology Risk Profile from Associated Technology Readiness Levels 

Lower Technical Risk Technologies Higher Technical Risk Technologies 

• AI-Enabled Productivity Applications 

• Risk Models for Optimal Asset Deployment   

• AI Embedding for Alternative Data Streams 

• AI-Filtered Domain Awareness 

• Modern Optimization for Asset Deployment 

  



Results 11 

4.1 AI-Enabled Productivity Applications 

One idea from this review that excited the emergency managers was the idea of using modern 
NLP to reduce the workload of emergency managers during and after 
emergencies.20,42,43,48,49,153,191 The emergency managers were interested and comfortable with 
the idea of AI converting bullet points into long-form text. This was extremely interesting to the 
emergency managers for finishing after-action reports, for conducting overall retrospectives of 
events, and for other reporting requirements.208 

The underlying technology that would enable such applications are LLMs, which are trained to 
turn text into “semantic representations,” which quantitatively describe an idea, and then to turn 
the semantic representations into human readable text. This underlying technology has enabled 
many private applications, most notably ChatGPT.v This technology is ready and mature to do 
text summarization, bullet to long-form conversions, and similar techniques. Unfortunately, 
LLMs rely on existing and learned knowledge from their training corpus, so dynamic fields are 
still a challenge for them. Specifically, they can “hallucinate” concepts when they try to process 
new concepts that were not in their training corpus. RAG is promising solution to hallucinations, 
but it is still somewhat immature.iv 

An additional use to the same technology, with very different uses in EM, is the concept of a 
programming helper such as Github’s CoPilot.vi This could help expedite during emergency 
access to new databases; it is ideal for time critical programming, but its quality is not up to the 
quality of human written code. The very limited applicability to EM may be due to the 
hallucination problem, legislative restrictions, and because the training corpuses of the largest 
LLMs are likely both insecure and in violation of information use licenses.v The security issue is 
likely to be resolved, as several national laboratories have deployed LLMs within their Official 
Use Only environments; however, licenses remain an ongoing legal concern. With growing trust 
in AI and governance regarding training datasets, and with better security around use, these 
types of technologies could be deployed at scale in 5-7 years. 

HIGHLIGHTED TECHNOLOGY: 
AI-ENABLED PRODUCTIVITY 
APPLICATIONS 

6-8 
TRL 

1-3 
TRLEM 

5-7 
YEARS 

CURRENT STATUS READY IN 

C
on

ce
pt

 

Use AI for administrative tasks such as: 
- Knowledge summarization 
- Report writing 
- SQL query writing 
- Code writing 

- Very little applied focus from EM 
- Hallucination problem 
- Questionable regulation status 

R
esearch
Status 

Application to Emergency Management 

- After-action reports 
- During emergency queries for status 
- Retrospective for performance review 
- Press reports 

- With growing trust in AI, AI-Enabled 
Productive Applications will be applied 
in general and bespoke ways to EM. 

Prediction 
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4.2 Public-Facing AI Communication 

Like the concept of AI-Enabled Productivity Applications, NLP could perform public-facing 
communication. This could drastically reduce the amount of time needed for press releases, 
phone answering, requests from media, and similar tasks. Emergency managers were 
interested in the time savings of using AI for this type of communication but were concerned 
about the public perception of using an AI to perform this kind of communication as well as the 
current lack of legal guidance. 

The underlying technology for using AI to perform public-facing communication is the same as 
AI-Enabled Productivity Applications, again using LLMs to convert concepts into human 
readable text. As such, it is susceptible to the same hallucination problems and requires the 
same solutions. Further, LLMs perform an action more like “association” in their conversion of 
concepts into text than “planning”—they provide a mix of previously encountered scripts instead 
of planning from a framework.vii This makes long text written by AI less likely to be coherent and 
self-consistent than that written by a human. Solutions to the planning question are under 
development (see AI-Enabled Planning). 

An additional benefit to using AI for public-facing communication is the ability to train the AI to 
perform best practices in communication. This has already been approached in the literature— 
some research has been performed into how to communicate to indigenous populations with 
cultural differences.43,44 This could be especially beneficial during long-running and stressful 
situations where an AI would be completely immune to the fatigue or emotions of the situation. 
More enthusiasm was observed for systems in which humans would review final versions of 
messages, pointing to utility as a decision support system. 

Given the underlying technology is the same as AI-Enabled Productivity Applications, AI-
enabled public-facing communication in EM could be ready to be deployed responsibly in 5-7 
years. However, it is likely that journalists already use AI to draft their public communications, 
and it may be used before it is pushed out officially by the agencies. 

HIGHLIGHTED TECHNOLOGY: 
PUBLIC-FACING AI COMMUNICATION 

5-7 
TRL 

1-3 
TRLEM 

1-2*
YEARS 

CURRENT STATUS READY IN 
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 - AI can generate coherent scripts based 
on several bullet points for public 
dissemination. 

- Certain objectives can be rewarded 
during training. 

- AI methods can “hallucinate” facts and 
insert them into text. 

- AI methods currents do more association 
than planning, which makes long 
communications less coherent. 

- Solutions for both above are in 
development. 

R
esearch
Status 

Application to Emergency Management 

- Use for press reports and newspaper 
interviews to ease the burden on emergency 
managers. 

- Research backed communication methods 
can be rewarded in training for consistent and 
optimal tone. 

- AI may already be used by journalists for 
public communications. 

- Governance and the public trust 
landscape are potential barriers to use in 
EM. 

- As with journalists, likely will be used 
informally, even if not approved or ready. 

Prediction 
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4.3 AI-Filtered Domain Awareness 

As described in the framework, the information environment for emergency managers is already 
and increasingly growing more complex. Unstructured, mixed quality, and overwhelming 
amounts of information is provided through video feeds, social media, phone communications, 
sensors, and additional sources. Simply tending to all these sources is difficult, much less 
filtering, weighting, and verifying the data. As is becoming common in defense, intelligence, and 
other security situations, domain awareness facilities or applications can use ML techniques to 
determine the appropriate and optimal information to display to the emergency managers.14 

Several ML technologies could play a role in information filtering, weighting, and display. The 
first and most crucial is the “encoding” of text, video, images, and other information into a 
semantic representation that can be computationally manipulated. Techniques for doing this 
abound, although contrastively learning has only recently enabled the ability to compare 
information from across data types (i.e., image to text comparison). Then, data fusion is an 
important technology needed to ensure that all information available is presented, not just the 
information available solely in each data stream.175 Data fusion, despite its long history of 
research, still has major challenges. 

A concern in filtering information through AI techniques is the “echo chamber” effect, where AI 
simply chooses the same information even when other information is available. Emerging 
explore-exploit tradeoff techniques may be able to modulate the proportion of new and 
previously shown information displayed. 

Given the relatively easy regulation environment and low public visibility, domain awareness 
filtering and weighting may be deployed relatively quickly, in 2-5 years. However, it will take 
quite a bit longer to deploy data fusion-enabled systems with proper testing and evaluation. This 
highlighted technology seems especially ripe for incremental improvements, and the defense 
and intelligence sectors are actively developing solutions. 

HIGHLIGHTED TECHNOLOGY: 
AI-FILTERED DOMAIN AWARENESS 

1-3 
TRL 

1-3 
TRLEM 

2-5 
YEARS 

CURRENT STATUS READY IN 
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 - An information-rich environment like an 
emergency needs information filtering 
and weighting. 

- Data fusion techniques can more 
judiciously show and remind humans 
information. 

- Operations centers are evolving and 
have an appetite for advanced 
techniques. 

- Issues exist with the “echo chamber” 
effect, and an explore-exploit tradeoff is 
needed for viewpoints on information. 

- Human-machine teaming and perception 
issues will be critical to overcome. 

R
esearch Status 

Application to Emergency Management 

- Operations center visuals 
- Reminders to emergency managers and first 

responders 
- Follow-up for task completion in chaotic 

environments 

- The regulation environment is relatively 
simple for showing information to 
emergency managers, so near-term 
opportunities to deploy exist. 

- Most of the underlying technology exists 
and other fields are deploying similar 
systems. 

Prediction 
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4.4 AI-Enabled Planning 

Planning for emergencies or planning next steps within emergencies is an exceedingly difficult 
task. Especially in generalized or all-hazards approaches, the number of considerations and 
their sometimes-competing effects can overwhelm human planners. While traditionally not 
associated with high performance in planning, AI is promising as a planning technology because 
of its wide bandwidth for attending to many pieces of information. Emergency managers already 
outsource components of pre-event planning and were interested in using AI techniques to 
perform the same. 

As discussed in Public-Facing AI Communication, the planning performance of current ML 
techniques are not of a high standard. They often associate current situations with past 
situations and use plans from past situations, without regard to new constraints or past plans’ 
success. Several new techniques have been proposed and implemented, including Chain-of-
Thought reasoning, Tree-of-Thought reasoning, and neural A-star, which are promising planning 
technologies for neural networks.viiix Coupled with data fusion, neural network planning could 
perform consistent, fast, and close-to-optimal planning for a variety of situations. 

Emergency managers were interested in using this technology to ease their burden of planning 
for specific emergencies and creating time-consuming reports that are required. The opportunity 
may be larger than that: neural planning could be used to improve current methods to quickly 
create evacuation plans under changing road conditions, to route autonomous vehicles, and to 
plan new resource allocations with dynamic resource availability183-210 . This technology had 
more practitioner support as a decision support system rather than as an unchecked decision 
system. 

Theoretical barriers may persist in the nascent technologies like Chain-of-Thought, thus this 
technology will take 7-10 years to fully adopt and deploy. The testing and evaluation of this 
technology may be especially challenging, as it must either require numerous full-scale 
exercises or rely on simulated (and therefore imperfect) data. The constraints that make this 
technology interesting to emergency managers are unique, and, as a result, DHS (along with 
the Department of Defense [DoD]) may have an outsized impact on this technology. 

HIGHLIGHTED TECHNOLOGY: 
AI-ENABLED PLANNING 

4-6 
TRL 

1-3 
TRLEM 

7-10 
YEARS 

CURRENT STATUS READY IN 
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 - Emerging techniques can ingest multiple 
data streams to process situation 
context (e.g., surveillance footage, 
overhead imagery, and microblogs). 

- Planning steps using this full context can 
provide more optimal solutions. 

- Fusing multiple data streams is 
currently developed for pairs and 
triplets, moving toward more. 

- Several nascent concepts such as 
Chain-of-thought, tree-of-thought and 
neural A-star are promising. 

R
esearch
Status 

Application to Emergency Management 

- Resource routing under uncertain road status 
- Autonomous vehicle routing 
- Resource allocation during an emergency 

- Possible theoretical barriers in neural 
planning. 

- It will be difficult to test and evaluate 
these technologies. 

- DHS and DoD may have a large 
influence in this space. 

Prediction 
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4.5 AI-Enabled Disaster Prediction and Detection 

The most popular topic of the ML in EM literature is that of disaster prediction and detection.  
Current researchers apply it to flood prediction,154-182 infrastructure failure,162 security 
emergencies, and famines.137 They use overhead imagery, geospatial information systems, 
tabular data such as soil densities, and graph techniques to perform this prediction. These 
techniques are well supported by the ML literature—the classifiers underlying disaster prediction 
and detection are one of the first thing to which any ML student is exposed. The value 
proposition for using ML to perform these tasks, and not human-based agents, is the constant 
vigilance possible with AI, the consistency and speed, and the wide bandwidth to digest many 
data streams. Overall, AI has proven to be better at prediction and detection than humans in a 
wide variety of fields.i 

Some concerns exist with AI-enabled prediction and detection, specifically in generalizability. 
Many neural networks are trained on one dataset representing one disaster in one location. It is 
very unlikely that those networks are applicable to other situations or locations. The field has 
found several ways to alleviate this issue, such as data diversity. Using many different locations 
and different disasters in a training set (at least 100,000) creates robust, generalizable models. 
Fortunately, disasters are not that prevalent, resulting in an inherent lack of data. Few-shot 
learning is a subfield of ML dedicated to learning on smaller amounts of data than traditional 
techniques and therefore will likely have a high impact in disaster prediction and detection. 

Based on the existing literature, these techniques are ready for deployment in certain cases. 
The ML operations (MLOps) surrounding those cases are engineering concerns that should be 
considered, such as how to monitor the models to ensure they are not failing and how to alert 
when they are failing.208 For fully generalizable all-hazard type models, a sizable amount of data 
and resource allocation is required before training and deploying; therefore, this research will 
continue throughout the next 10 years. 

HIGHLIGHTED TECHNOLOGY: 
AI-ENABLED DISASTER PREDICTION AND 
DETECTION 

1-7 
TRL 

1-7 
TRLEM 

1-10 
YEARS 

CURRENT STATUS READY IN 

C
on

ce
pt

 - Given input data streams (e.g., 
overhead imagery), onset of events can 
be predicted or detected. 

- AI has consistently proven to predict 
better and detect sooner than traditional 
prediction/detection in many other fields. 

- Single-modality single-threat examples 
abound. 

- Issues persist with generalizability (i.e., 
does model for site A apply to site B?). 

- Few-shot learning is an important topic 
for future work. 

R
esearch
Status 

- Earlier prediction and detection can enable 
better responses. 

- Prediction can enable proactive responses. 
- Consistent AI vigilance can ease burden on 

public servants. 

Application to Emergency Management 
- Wide ecosystem will be developed and 

deployed over the next decade. 
- MLOps (the art of training, retraining, 

alerting, and monitoring models) will 
become paramount. 

Prediction 



Results 16 

4.6 AI-Enabled Recovery and Prediction 

Evaluation of the recovery of locations after a disaster, prediction of their progress, and the 
second order actions to help speed or change that recovery are historically an 
underrepresented area of EM. AI holds promise to perform measurement of recovery, prediction 
thereof, and enable those future decisions to speed recovery in the same way that it holds 
promise to detect disasters before they happen.27,80,177,178,198,199 

The underlying technology for recovery prediction and measurement is very similar to that 
underlying AI-Enabled Disaster Prediction and Detection: regression is a fundamental technique 
in data science and a large section of literature is devoted to using it to measure and predict 
recovery. 

Similar conclusions to AI-Enabled Disaster Prediction and Detection also apply. Generalization 
and MLOps are areas of focus, and properly performing those will result in highly performant 
and useful systems. The area of recovery prediction and measurement may need more 
deliberate focus because of the historically lower interest given from EM research perspectives. 
Overall, some technologies that prediction and measurement are ready to be deployed today, 
but research in techniques will evolve throughout the next 10 years. 

HIGHLIGHTED TECHNOLOGY: 
AI-ENABLED RECOVERY AND PREDICTION 

1-7 
TRL 

1-7 
TRLEM 

1-10 
YEARS 

CURRENT STATUS READY  IN 
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 - Given a data stream, AI can measure 
and predict aspects of the environment. 

- AI has consistently proven to measure 
with lower mean absolute error and 
predict with the same compared to other 
methods. 

- Single-modality, single-emergency type 
solutions exist in the literature. 

- Issues persist with generalizability (i.e., 
does a model at time X work for time 
Y?). 

- Data fusion is growing in popularity. 

R
esearch
Status 

Application to Emergency Management 

- Automated measurement of vegetation or 
building recovery after disaster. 

- Many data modalities currently used 
(overhead imagery, geospatial information 
systems, social media posting). 

- From an AI perspective, this does not 
differ from AI-Enabled Disaster 
Prediction – similar conclusions apply. 

Prediction 



Results 17 

4.7 Risk Models for Optimal Asset Deployment 

As previously stated, optimal decision-making was a surprising focus of ML in EM research, at 
least to the team conducting this task.  However, emergency managers are consistently thinking 
about how they can organize and manage their assets in optimal ways. Included in this are 
different, risk-based ways to think about costs of each decision.64,65,69,72,90,119,140 The intersection 
of these two considerations is a field with many opportunities and broader than simply resource 
allocation during an emergency. Risk-based optimization can be used to place sensors in a way 
that reduces the risk (not probability) of not detecting a disaster during its onset and help route 
vehicles or other assets, which reduces the risk to either the assets or the population under risk, 
and similarly for evacuation routes. 

Both supporting technologies, optimization techniques and risk modeling, are well understood 
and have significant supporting literature in their own right. The connections between the two 
have already been established, and application studies have already been created in the ML in 
EM literature. A broad variety of underlying technologies exist and have relevance, from 
gradient-free optimization, stochastic optimization, partial-differential equation-based 
optimization, and risk assessment models. This area of research is highly developed and may 
be deployable within the next 1 to 5 years. 

Potential concerns with the governance and public perceptions surround the confluence of 
these two fields. The public perception concerns from AI-Enabled Planning repeat, with the 
additional consideration that risk models are also somewhat controversial in their own 
right.143,144 Governance and responsible use of these two technologies may hinder or even limit 
its adoption and deployment. Further, testing and evaluation of these technologies is difficult, 
especially from a mission-level perspective. Counterfactuals to the taken resource allocation are 
difficult to assess except in exercises or simulation. DHS may have a large influence in 
furthering this field as it seeks to overcome those large challenges. 

HIGHLIGHTED TECHNOLOGY: 
RISK MODELS FOR OPTIMAL ASSET 
DEPLOYMENT 

6-9 
TRL 

4-6 
TRLEM 

1-5 
YEARS 

CURRENT STATUS READY IN 
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- With limited resources, optimizing risk of 
events (as opposed to minimizing 
probability) is important. 

- Modern risk modeling methods paired 
with optimization can guide the 
deployment of assets in a risk-optimal 
way. 

- Risk modeling and optimization methods 
are well understood, the connections 
between the two are already well 
established. 

- Application studies to EM are numerous 
in the literature. 

R
esearch
Status 

Application to Emergency Management 

- Sensors may be placed to detect disasters 
with the lowest risk to the population of missed 
disasters. 

- Vehicles may be routed in a way that 
minimizes the overall risk. 

- Evacuation routes can be calculated in a risk-
optimal way. 

- Wide governance and public perception 
of machine-generated plans is a concern 
for the future. 

- Mission-level assessment of risk 
ontologies will be important. 

- DHS may have a large influence in 
combining these two technologies. 

Prediction 
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4.8 AI Embedding for Alternative Data Streams 

The emergence of the Internet of Things and Smart Cities add complexity to an already difficult 
information environment for emergency managers. Some emergency managers have long 
needed to understand technical sensor readings such as seismic sensors or at facilities such as 
chemical or nuclear plants,171,184 but the proliferation of additional sensors has expanded this 
need to most localities. AI enables a unified approach to use each sensor reading and 
contextualize it with other information, unlike current techniques which require bespoke 
analyses for each sensor type. 

Emergency managers were less interested in this technology than the rest of the technologies; 
the effects of it are indirect and the benefits will be realized in a longer time frame. It has been 
chosen for inclusion as the theory that underlies embedding alternative data streams is the 
same theory that enabled computer vision and NLP, both of which were largely ignored by 
applied researchers until they reached a certain level of maturity. 

Encoding is a set of techniques in ML that transforms a datum (e.g., text, image, video, 
computed tomography, spectra, or other type) into a single semantic representation, on which 
further computational manipulation can be performed. Contrastive, diffusive, reconstructive, and 
supervised learning have enabled the theoretical ability to compare data from the same modality 
and between modalities.x This is fundamental to the downstream tasks such as planning, 
predicting, and detecting. 

While challenges persist with adoption, data scale, and nuisance information, the techniques to 
encode almost any data type are currently available. Large-scale training, testing, and 
evaluation will help applications researchers use these for in their technologies. These will likely 
be applied more commonly in applied research such as in EM within the next 3 years. Because 
homeland security, defense, and intelligence sectors are more likely to use alternative sensors, 
they may have a large role to play in furthering this technology. 

HIGHLIGHTED TECHNOLOGY: 
AI EMBEDDING FOR ALTERNATIVE DATA 
STREAMS 

6-9 
TRL 

2-4 
TRLEM 

1-3 
YEARS 

CURRENT STATUS READY IN 
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 - Every new data type traditionally 
requires bespoke analysis solutions 
(e.g., peak fitting for spectra). 

- Modern contrastive learning and neural 
architectures allow a unified approach 
for all data types. 

- Embedding is well understood and 
implemented for vision and text. 

- Embedding is still emergent for audio, 
video, and some technical data streams. 

- The applied research follows the above 
distribution. 

R
esearch
Status 

Application to Emergency Management 

- Allows utilization of alternative data modalities 
for detection, prediction, and assessment of 
emergencies. 

- Vastly increases the amount of data available 
for computational use in making decisions. 

- Use of these methods is increasing to 
find data streams with the most useful 
signals. 

- DHS and the intelligence community 
may have a large influence in this field. 

Prediction
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4.9 Modern Optimization for Asset Deployment 

Many EM tasks naturally fit into an optimization regime: the minimization of risk of certain 
emergencies or the minimization of cost when deploying assets. Performing an optimization in a 
realistic information environment, amid continuous and discrete values, uncertainty about those 
values, missing data, and possible constraints on the solution (such as the number of assets or 
budget) has historically been challenging. ML has both re-invigorated investigation into 
optimization methods and provided new methods.1 Like AI Embedding for Alternative Data 
Streams, modern optimization for asset deployment is a foundational technology included in this 
task despite less interest from EM practitioners. 

Several advancements in optimization techniques enable different possibilities. Reinforcement 
learning and other gradient-free enables optimization in a situation where the derivative of the 
optimization target has undefined gradients, constraints such as when assets cannot cross a 
boundary, or budget limitations. Stochastic Gradient Descent methods used in ML32 can also 
enable the minimization of very high dimensional functions, such as optimizing the public 
perception of a speech, where public perception is measured by some neural network on social 
media posts. Finally, partial-differential equation-focused optimization, as is used in the power 
grid optimization sector, have added techniques that can enable security of their solutions or 
other discrete considerations in what is otherwise a continuous problem.xiii 

The overall field of optimization is robust, but the applied literature is almost non-existent. 
Therefore, it will take at least 7 to 10 years before deployment of such methods are affected. In 
the interim, emergency managers should be involved with the applied researchers such that the 
appropriate mission objectives are sought in the optimization problem. 

HIGHLIGHTED TECHNOLOGY: 
MODERN OPTIMIZATION FOR ASSET 
DEPLOYMENT 

1-4 
TRL 

1-2 
TRLEM 

7-10 
YEARS 

CURRENT STATUS READY IN 
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 - New optimization techniques can find 
optimal solutions for problems 
impossible before, such as: 
o Discrete-continuous sets 
o Problems with undefined gradients 
o Large dimensional outputs 

- Separate fields are investigating aspects 
of this technology: 
o Differential equation-focused 

optimization 
o Reinforcement learning 
o Genetic and other gradient-free 

methods 

R
esearch
Status 

Application to Emergency Management 

- Enables resource routing and deployment 
plans with additional constraints (e.g., 
security). 

- Enables planning with predictions with 
uncertainty. 

- Allows for resource routing using simulation as 
part of the data stream. 

- Applied research is needed to map 
separate methods to appropriate 
applications. 

- EM subject matter experts will need to 
guide optimization targets in the field. 

Prediction 



Results 20 

4.10 Security of AI Assets and Data 

As in all fields that rely on digital technologies, cybersecurity is a crucial aspect for AI in 
EM.28,45,46,47 Further, the data used to train the AI is also a critical asset that must be protected 
by cybersecurity practice. The requirements for cybersecurity in ML-enabled applications are 
not unique and most practices used by the broader software deployment industry will 
appropriately protect AI-enabled assets. As AI expands into autonomous 
vehicles71,80,83,92,103,104,186 and edge-based computing,73,75,84 cybersecurity will be needed on 
more and lower-power systems, which will need to be addressed by the defense, security, and 
EM communities. 

Data security has more unique facets than the cybersecurity of deployed AI assets. Currently, 
datasets utilized by ML practitioners are large, monolithic, and curated sets of measurements 
for specific purposes. They may be susceptible to intentional or unintentional biases, as well as 
synthetic data and possibly backdoors. With the improvement of synthetic data generation 
through simulation and ML-based techniques, risks increase for inclusion or insertion of data to 
purposely affect downstream AI techniques’ training. 

Procedures for handling such data assets should be created and should consider: 

• How or whether to handle a dataset from a third party for which the data veracity cannot be 
verified? 

• How to verify a dataset or dataset creator? 

• How to protect a government-owned dataset from insertion of synthetic or biased data? 

Maintaining the security of AI-enabled assets and data used to train AI techniques is crucial— 
the alternative is untrustworthy AI techniques and vulnerable assets. 

ENABLING TECHNOLOGY: 
SECURITY OF AI ASSETS AND DATA 
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 - Connected assets require advanced 
cybersecurity to enable their proper and 
ethical use. 

- Datasets on which AI is trained also 
require adversarial security. 

- Standard cybersecurity approaches 
abound for asset security. 

- Dataset security (and entitlement) is a 
topic of current debate in popular and 
technical media. 

- Few systems-level analyses are 
available in the open literature. 

R
esearch
Status 

Application to Emergency Management 

- Future autonomous vehicles may be 
vulnerable to cyberattack. 

- Future datasets may be vulnerable to 
inclusion of mis- and disinformation as well as 
engineered backdoors. 

- The requirements will change based on 
the development of AI technologies, both 
standard and adversarial. 

Prediction
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4.11 Modeling, Simulation, and Digital Twin 

AI-enabled technologies require large amounts of data to develop and train. In a field such as 
EM, where there is an inherent imbalance or dearth of data about the events of interest and little 
possibility to perform experiments, simulation broadly is of interest to help alleviate the data 
gaps. As such, modeling and simulation and their more data-driven relative, digital twins, have 
received significant interest for their use in the AI development pipeline. 

Significant literature exists about modeling, simulation, and digital twin techniques, and some 
specifically for EM.79,89,160 Some successful use cases highlight the use of simulated data for 
training disaster predictors. The emergency managers polled were interested in digital twin 
created data for working with overhead images or chatbots. 

In other fields, the utility of synthetic data to AI training has come into question. While simulation 
or other synthetic data is easier to generate than data from real events, it may not exactly follow 
the distribution of data from real events. That fact, coupled with AI’s current issues in 
generalization, can cause the AI to learn to use features in the simulated data that do not exist 
in real data. This debate is ongoing and may not be resolved soon. The consensus in high-
energy physics is that synthetic data does not benefit AI training,xi whereas in materials science 
the opposite seems to be accepted. Further, digital twins, which are based on combining 
physical and data-driven techniques, require data in their own right. Thus, they are less 
appealing as a way to alleviate data size concerns for training neural networks. Modeling, 
simulation, and digital twin technologies hold a huge promise; however, their utility should 
always be tested before large investment. 

ENABLING TECHNOLOGY: 
MODELING, SIMULATION, AND DIGITAL 
TWIN 
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 - Training AI requires large amounts of 
data. 

- The amount of available data may be 
able to be augmented with simulation, 
modeling, or digital twins. 

- Significant literature is available on many 
different modeling, simulation, and digital 
twin modalities. 

- Open debate persists about whether 
synthetic and simulated data helps 
downstream trained AI. The field of high-
energy physics and materials science 
are notable fields exploring synthetic 
data. 

R
esearch Status 

Application to Emergency Management 

- Climate modeling may be used to train 
disaster predictors for climate disasters. 

- Synthetic overhead images, or their analogs in 
other fields, can be used to train other disaster 
predictors. 

- Synthetic text can be used to train, test, and 
evaluate chatbots. 

- Applied EM research in simulation, 
modeling, and digital twin for AI is 
nascent, emerging in climate modeling. 

- Iteration will show whether it is helpful to 
downstream trained AI. 

Prediction
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4.12 Information Technology Infrastructure for AI 

One major assumption applied throughout this report is the assumption that data will be 
delivered to the AI-enabled EM solution at the right speed and with the right quality. That 
assumption relies on a robust and pervasive information technology infrastructure, and requires 
tight integration between enterprise-level system architects, emergency managers, and data 
scientists, as well as the software engineers and data engineers implementing the architecture 
solutions.66 Advanced techniques for solving the problem of scaling data pipelines (sometimes 
called “data gravity”) have emerged for AI and other fields. Notable among those are data mesh, 
where data is shared to only the assets in the local proximity, and data fabric, which combines 
different layers for different aspects of the data ingestion and utilization process but enables 
centralized data access because of the process. Hybrid solutions are also promising, such as 
data mesh combined with a slower centralized data archiving process. 

Another aspect of information technology to impact EM is the interoperability and entitlements 
between the many heterogeneous organizations that comprise the EM enterprise. Future 
systems will need to operate continuously with many other systems.73,75,84 Future data owners 
will need to adjudicate access to data to new users at increasing speed. Standards may help 
solve some of these problems, but flexible technologies to help bridge the gaps between 
systems or adjudicate data access (such as zero trust systems) may also have a significant 
impact.208,209 DHS is exploring these questions, such as with the open architecture concepts 
being explored for Transportation Security Administration or the “client domains” being delivered 
to Customs and Border Protection. 

ENABLING TECHNOLOGY: 
IT INFRASTRUCTURE FOR AI 
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- Current IT infrastructure may not support 
AI at scale. 

- Data mesh and data fabric are 
increasingly deployed for commercial 
and defense applications. 

- If unsolved, infrastructure may severely 
limit AI applications. 

- Most AI utilizes centralized static 
datasets and assumes instantaneous 
high-quality data delivery during the 
event. 

- Use of streaming, incomplete, and online 
data has only started to be investigated. 

- MLOps research discusses these issues 
but is siloed from the main body of AI 
research. 

R
esearch Status 

Application to Emergency Management 

- With increasing data availability, better data 
routing and data discovery is needed. 

- Smart Cities expand the amount of data and 
complicate the above. 

- Better data routing would get the data to the 
right emergency managers, first responders, 
or volunteers at the right time. 

- Issues persist for bridging the divide 
between data engineers and data 
scientists. 

- DHS has already started to show interest 
and focus on operationalizing AI and ML. 

Prediction
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4.13 Governance and Public Perception of AI 

Possibly the largest issue in all modern AI is that of fairness, trustworthiness, responsibility, and 
public perception of AI. The legal environment surrounding ethics and laws for collecting data 
and using AI to act are changing quickly and sometimes unpredictably. The requirements for 
responsibility are especially important for fields like EM, where life and property are at risk.208 

The literature includes some examples of investigations into the public perception and 
governance around AI tools.15,16,50,51,93,115 Additionally, risk-based computations of the same 
have been performed.143 Foundational to those, articles seek to codify and validate 
measurement techniques for the public perception of AI techniques and resultant decisions. 

While the literature and other explorations will likely continue at scale due to this issue’s 
visibility, concerns persist about how this will affect the development and adoption of AI for 
EM.210 High-profile failures of deployed AI in EM will likely cause renewed questions about the 
ability of AI to approach questions where life and property are at risk, even if they occur at a 
lower probability or with lower consequences than human decisions. 

DHS has already approached many of the governance and public perception questions and has 
internal guidance to the acceptance, approval, and deployment of AI systems.13,51 With the 
relatively small number of deployed AI-enabled DHS applications, this system has a good 
performance history. It remains to be seen whether it will scale. Continued diligence, updated 
guidance, and retrospectives will likely be necessary to enable governance and public 
perception of AI that strikes the right balance between ensuring fair and trustworthiness of AI-
enabled tools and ease of adoption and deployment. 

ENABLING TECHNOLOGY: 
GOVERNANCE AND PUBLIC PERCEPTION OF 
AI 

C
on

ce
pt

 - Humans’ decision-making power comes 
through public trust and public mandates. 

- How can we empower AI to make decisions 
legally and ethically? 

- How can we communicate that process to 
the public? 

- Limited, single-use investigations 
have been published. 

- Risk-based considerations have been 
investigated. 

- Measurement techniques have been 
explored. 

R
esearch
Status 

Application to Emergency Management 

- Many actions must be—and must be perceived to 
be—fair and equitable, including: 

o Resource routing 
o Proactive actions 
o Risk-based decisions 

- Governance and public perception 
are likely the most important 
uncertainty for AI in the next decade. 

- DHS components are already 
engaging in determining the 
governing processes of AI. 

- High-profile failures of AI will be a 
challenge to mitigate and clean up. 

Prediction
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5.0 Conclusions 
Following a nearly year-long study into AI applications for EM, this report describes the detailed 
landscape of AI and its applications in EM. PNNL conducted a structured collection and curation 
of EM applications and AI technologies and aligned them to each other, followed by validation 
exercises with EM stakeholders, university faculty, college students, national laboratory 
researchers, and federal research staff. This work developed a framework that supports aligning 
the technologies between technologies in AI and their applications EM and the applications of 
EM with technologies in AI. Finally, the team curated a set of technologies and enabling 
technologies with the potential to greatly impact EM in the next 10 years. Highlights include: 

• The resulting technologies were diverse, ranging from text-based tools that may improve the 
everyday life of emergency managers and other stakeholders (like AI-Enabled Productivity 
Applications), to tools that may minimize cost and life loss in disasters (like AI-Enabled 
Recovery and Prediction), to technologies that may be foundational to the next stage of AI in 
EM toward the end of the next decade (such as AI Embedding for Alternative Data 
Streams).   

• Six technologies (AI-Enabled Productivity Applications, Public-Facing AI Communication, AI-
Enabled Planning, AI-Enabled Disaster Prediction and Detection, AI-Enabled Recovery and 
Prediction, Risk Models for Optimal Asset Deployment) had consensus from AI and EM 
stakeholders as to their optimistic future in the field. 

• One technology was viewed as useful, but misconceptions persisted about the extent to 
which it already existed (AI-Filtered Domain Awareness). 

• Two technologies were included because of the high impact possible, despite less interest 
from emergency managers specifically (AI Embedding for Alternative Data Streams, and 
Modern Optimization for Asset Deployment). 

• Four enabling technologies were identified that must be in place for the previous 
technologies to provide impact: 
– Security of AI Assets and Data 
– Modeling, Simulation, and Digital Twin 
– Information Technology Infrastructure for AI 
– Governance and Public Perception of AI. 

While improvement may be achieved through private industry and other public sector 
investment (such as from DoD or the intelligence community), several technologies have 
constraints and requirements specific to EM and may not progress without specific interest from 
the EM community, specifically the following:   

• Risk Models for Optimal Asset Deployment 

• AI Embedding for Alternative Data Streams 

• Modern Optimization for Asset Deployment. 

Governance and Public Perception of AI was identified as the most important enabling 
technology overall for AI, and as being the enabling technology with constraints and 
requirements most specific to the public sector, DHS, and EM. 
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Conclusions 25

Some EM-specific barriers to adoption should be considered when evaluating new AI 
technologies, such as the critical nature of EM applications. As coordinating agencies, EM 
organizations need to be aware of many domains and communicate with experts in all of them. 
This makes the negative outcomes from misclassifications or hallucinations much greater in EM 
than many other fields and is likely to lead to slower adoption in the critical and regulated EM 
and EM-adjacent fields compared to organizations not focused on public safety. Additionally, 
emergency managers frequently must communicate with entire communities, including those 
that are not technologically literate, meaning that many market-based tools may be less useful. 

Finally, the landscape of AI for EM is likely to change drastically in the next decade and may 
prove or disprove some of the conclusions provided from this report. However, the methodology 
and framework provided can be re-used to iterate toward future conclusions whenever a field-
changing event occurs or on another specified timescale. 
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